

COMPSCI 389 Introduction to Machine Learning

Evaluation Part 4

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Model Evaluation (Review)

- Often ML texts evaluate models by doing the following:
 - Partition the data into train/test.
 - Train the model on the training data.
 - Evaluate the model on the testing data.
 - Report a performance metric and a number representing the *uncertainty* in this performance metric.
 - Format: performance ±uncertainty

	Model	MSE	RMSE	MAE
0	k-NN k=1 sigma=None	1.104 ± 0.075	1.051 ± 0.029	0.803 ± 0.029
1	k-NN k=100 sigma=None	0.565 ± 0.041	0.752 ± 0.020	0.586 ± 0.020
2	k-NN k=110 sigma=90	0.565 ± 0.041	0.752 ± 0.020	0.586 ± 0.020

Algorithm Evaluation

- Recall that the previous method evaluates the performance of a single model (learned with each algorithm).
- To evaluate algorithms, we must evaluate them with different training sets.

Algorithm Evaluation (Ideal)

• Specify a number of trials, num_trials

In practice, we can't do this step!

- For each trial i in $1,...,\mathrm{num_trials}$ do:
 - Sample a data set (ideally independent of the data sets for other trials)
 - $\circ~$ Split the data set into training and testing sets
 - $\circ~$ Use the ML algorithm to train a model on the training set.
 - Use the trained model to make predictions for the testing set.
 - $\circ\,$ Compute the sample performance metric (e.g., sample MSE) for the test set. Call this Z_i .
- Compute and report the average sample MSE.
- Compute and report the standard error of $Z_1, \ldots, Z_{ ext{num_trials}}$.

Cross-Validation

- Idea: Repeatedly define different parts of the data set to be training and testing data.
 - Different training sets result in different models.
 - The testing set for each model will always be independent of the data used to train the model.
- To do this, we will split the data D into k equally-sized subsets.
 - Each of these subsets is called a *fold*.
 - This k is not related to the k in nearest neighbor.
- We will train on all but one fold and test on the held-out fold.
 - These individual evaluations on test sets containing one fold have high variance!
 - We can average these high-variance evaluations to obtain a better estimate of performance.

Entire Data Set

K-Fold Cross-Validation Pseudocode

- Input: Dataset D, Number of folds k, Machine Learning Algorithm ML_Algo
- **Output:** Cross-validated performance estimate

Procedure:

- 1. Split D into k equal-sized subsets (folds) F1, F2, ..., Fk.
- 2. For i from 1 to k:
 - Set aside fold Fi as the validation set, and combine the remaining k-1 folds to form a training set.
 - Train the model M using ML_Algo on the k-1 training folds.
 - Evaluate the performance of model M on the validation fold Fi. Store the performance metric
 P_i.
- 3. Calculate the average of the performance metrics: Average_Performance = mean(P_1, P_2, ..., P_k).
- 4. Optionally, calculate other statistics (like standard deviation or standard error) of the performance metrics across the folds.

Leave-One-Out (LOO) Cross-Validation

- The number of folds equals the number of points in the data set.
- Each test set contains only a single point!
- Provides the best estimates of performance.
- Often too computationally intensive to perform.

k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

```
# Choose number of folds for k-fold Cross-Validation
k = 20
kf = KFold(n_splits=k, shuffle=True, random_state=1)
```

display(kf)

KFold(n_splits=20, random_state=1, shuffle=True)

k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

- # Choose number of folds for k-fold Cross-Validation
 k = 20
- kf = KFold(n_splits=k, shuffle=True, random_state=1)

```
display(kf)
for train_index, test_index in kf.split(X):
    print("TRAIN:", train_index, "TEST:", test_index)
```

KFold(n_splits=20, random_state=1, shuffle=True)

TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[10	44	45	•••	43267	43290	43296]
TRAIN:	[0	1	2		43300	43301	43302]	TEST:	[40	93	134	•••	43246	43256	43261]
TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[3	23	34	•••	43262	43286	43288]
TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[8	19	25	•••	43277	43293	43299]
TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[11	33	58	•••	43255	43282	43292]
TRAIN:	[0	1	3	•••	43300	43301	43302]	TEST:	[2	22	24	•••	43271	43284	43298]
TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[21	36	55	•••	43241	43249	43275]
TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[26	46	62	•••	43223	43231	43265]
TRAIN:	[0	1	2	•••	43300	43301	43302]	TEST:	[29	35	43	•••	43229	43234	43242]
TRAIN:	[1	2	3	•••	43300	43301	43302]	TEST:	[0	13	31	•••	43274	43278	43281]

k-Fold Cross-Validation Implementation

from sklearn.model selection import KFold

```
# Choose number of folds for k-fold Cross-Validation
```

```
k = 20
```

kf = KFold(n_splits=k, shuffle=True, random_state=1)

```
display(kf)
for train_index, test_index in kf.split(X):
    print("TRAIN:", train_index, "TEST:", test_index)
    mse_score = mse_for_fold(train_index, test_index, model, X, y)
    print("MSE Score for this fold:", mse_score)
```

```
# Function to compute MSE for each fold
def mse for fold(train index, test index, model, X, y):
   X_train, X_test = X.iloc[train_index], X.iloc[test_index]
    y train, y test = y.iloc[train index], y.iloc[test index]
   model.fit(X train, y train)
    predictions = model.predict(X_test)
    return mean_squared_error(y_test, predictions)
# Choose number of folds for k-fold Cross-Validation
k = 20
kf = KFold(n splits=k, shuffle=True, random state=1)
display(kf)
for train_index, test_index in kf.split(X):
    print("TRAIN:", train_index, "TEST:", test_index)
    mse_score = mse_for_fold(train_index, test_index, model, X, y)
    print("MSE Score for this fold:", mse_score)
```

KFold(n_splits=20, random_state=1, shuffle=True)

TRAIN: [0 1 2 ... 43300 43301 43302] TEST: [10 44 45 ... 43267 43290 43296] MSE Score for this fold: 0.5807234989808185 TRAIN: [0 1 2 ... 43300 43301 43302] TEST: [40 93 134 ... 43246 43256 43261] MSE Score for this fold: 0.5630048290694765 TRAIN: [0 1 2 ... 43300 43301 43302] TEST: [3 23 34 ... 43262 43286 43288] MSE Score for this fold: 0.5553467010840363

 TRAIN:
 [
 0
 1
 2 ... 43300 43301 43302]
 TEST:
 [
 8
 19
 25 ... 43277 43293 43299]

 MSE Score for this fold: 0.6129428000450592

 TRAIN:
 [
 0
 1
 2
 ...
 43300
 43302
 TEST:
 [
 11
 33
 58
 ...
 43255
 43282
 43292
]

 MSE Score for this fold: 0.5933726084007112 TRAIN: [0 1 3 ... 43300 43301 43302] TEST: [2 22 24 ... 43271 43284 43298] MSE Score for this fold: 0.5644141827789226 TRAIN: [0 1 2 ... 43300 43301 43302] TEST: [21 36 55 ... 43241 43249 43275] MSE Score for this fold: 0.573666751853279 TRAIN: [0 1 2 ... 43300 43301 43302] TEST: [26 46 62 ... 43223 43231 43265] MSE Score for this fold: 0.5764896819599702 TRAIN: [0 1 2 ... 43300 43301 43302] TEST: [29 35 43 ... 43229 43234 43242] MSE Score for this fold: 0.5443248559898528

 TRAIN:
 1
 2
 3 ... 43300 43301 43302
 TEST:
 0
 13
 31 ... 43274 43278 43281

 MSE Score for this fold: 0.5647024320496056

k-Fold Cross-Validation for Weighted k-Nearest Neighbor ($k = 300, \sigma = 100$)

- Average the mse_score values from each fold (code not shown).
- Compute the standard error (code not shown).

Average MSE: 0.571 MSE Standard Error: ±0.004

- Notice that this is fundamentally different from what we evaluated before.
 - **Model evaluation**: Use one train-test split, report the performance and uncertainty on the test set.
 - Algorithm evaluation: Use k-fold cross-validation to estimate the performance (and report the uncertainty) if an algorithm were to be applied to a new data set of a given size.

End

